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Lattice QCD: Going Beyond the Mass Spectrum 

Stephen R. Sharpe m 

The present status of lattice measurements with fermions is discussed. Methods 
are presented which improve the extraction of particle masses using staggered 
fermions. It is suggested that fermion physics on blocked lattices might show 
improvement as compared to that on lattices generated with the Wilson action. 
This idea is tested by comparing results from 183 x42 lattices generated at 
/~=6.2 with results from the 63x 14 lattices obtained from them by twice 
blocking with a 31/2 transformation. Also, a comparison of 83 x 16 blocked and 
Wilson axis lattices is made. Finally, three point correlators are used to 
elucidate the properties of the scalar isoscalar channel. 

KEY WORDS: Lattice gauge theory; staggered fermions; block spin trans- 
formation, scalar particles. 

Monte-Carlo methods have considerably increased our understanding of 
pure gauge theories. This is less true, however, for gauge theories with fer- 
mions. A substantial amount of work has been done with fermions added 
in the approximation of ignoring fermion loops (the quenched 
approximation). This work has led to a zeroth order description of the low- 
lying hadron spectrum and to preliminary measurements of coupling con- 
stants and form factors. But there are many reasons to be dissatisfied with 
these results. For one thing, because the quenched approximation is uncon- 
trolled, we do not know whether the results are really that much better 
than those obtained from less fundamental approaches such as the non- 
relativistic quark model. Another problem is that if the pure gauge theory 
is anything to go by, it may be necessary to go to very large lattices (larger 
than most of those used to date) to enter the region where the perturbative 
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renormalization group applies, so that a continuum limit can be taken. 
Finally, we would like lattice gauge theory to be a tool, giving us infor- 
mation that we have no other way to measure or calculate. 

Thus lattice gauge theory (LGT) has now reached the stage where it 
can go beyond what I call the naive mass spectrum. In fact there has 
already been substantial progress toward finding a practical method of 
including fermion dynamics into LGT simulations. (I) This work is essential 
if LGT is to become a useful tool for phenomenology. It is equally impor- 
tant to find practical ways of measuring complicated quantities that we 
have no other way of obtaining, prime examples being the matrix elements 
of the weak interaction Hamiltonian, and the masses and couplings of 
exotic particles. We must also learn to deal with the fact that most particles 
decay when one includes fermion loops. Indeed, various attempts have 
already been made in this direction. Browner et al., ~ Martinelli et  aL, (3~ 

and especially Bernard et  al. (4) have proposed methods of evaluating weak 
interaction matrix elements and have made preliminary measurements. De 
Forcrand and collaborators (5) have finally pinned down the scalar glueball 
mass using source techniques. Mackenzie and Thacker (6~ have studied the 
H dibaryon, a suspect in the Cygnus X-3 mystery, finding evidence that this 
exotic baryon is not stable. There are other examples. In this paper I 
present results of attempts in this direction obtained in collaboration with 
Phillipe de Forcrand, Rajan Gupta, Gerry Guralnik, Greg Kilcup, 
Apoorva Patel, and Tony Warnock. 

Before proceeding it seems appropriate, given the nature of this 
conference, to speculate about the future of LGT. I have drawn up the 
following list of levels of possible progress 

Hadron spectrum 
Form factors, coupling constants 
Structure functions 

Exotic particles: GG, Q Q G  .... 
Matrix elements, weak and superweak 
LGT with scalars and fermions 
LGT with chiral fermions 

On the left-hand side are quantities which we can measure experimentally 
(I am assuming that the LGT in question is QCD). Lattice calculations of 
these quantities serve as an important check on the methods and, of course, 
on the correctness of the theory. On the right are the quantities and 
theories we would like to understand in order to build models at smaller 
scales than the QCD scale. As one moves down both lists the difficulty of 
the lattice measurement increases. Al l  entries require the use of dynamical 
fermions if they are to give completely reliable results. Results obtained in 
the quenched approximation will give a guide to the answers. This is 
probably sufficient where there is at least an order of magnitude theoretical 
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uncertainty or discrepancy as, for example, in the A I =  �89 rule. In any case, 
for most applications involving fermions, the development of techniques 
does not require the use of dynamical fermions, since the inclusion of fer- 
mion dynamics only effects the set of gauge configurations to be used. For 
this reason I do not discuss dynamical fermions in the following. 

The most interesting possible uses of LGT are, not suprisingly, the last 
two in the list. It is still unresolved whether the weak interactions are 
strong or weak! That is, it is not clear whether the weak interactions are 
described by the Weinberg-Salam Lagrangian with the gauge coupling 
being weak or strong. It is not even clear whether theories with fundamen- 
tal scalars can have interacting continuum limits. To answer these 
questions we must simulate theories with fermions (preferably dynamical) 
and scalars. 

Chiral theories--theories with fermions in complex representations of 
the gauge group--are perhaps the most interesting of all field theories. 
They have the potential of solving many phenomenological problems, e.g., 
they may have composite light fermions in their spectra (for recent work, 
see Ref. 7), yet we have very little reliable understanding of their dynamics. 
To put such theories on the lattice we must overcome the doubling 
problem (discussed by Kogut, Ref. 1) because of which lattice fermion 
representations are always real. An important first step has been made by 
Alvarez-Gaume and Della-Pietra (8~ who relate the intrinsically chiral part 
of the effective action--the imaginary part of the fermion determinant--to 
a quantity calculable in a theory with real representations of fermions. A 
naive transcription of their continuum formula onto the lattice, (9~ however, 
fails. This is a very interesting area for future study. 

Having indulged in such speculations, I now return to what is possible 
today. Put another way, I must retreat from the title "Beyond the naive 
mass spectrum" to the more modest "e beyond the naive mass 
spectrum. ''(1~ I will describe our efforts to move down the list given above. 
At present our major goal is to measure pion and kaon matrix elements of 
weak and super-weak interaction Hamiltonians. Unfortunately, we have 
not yet reached this goal. Nevertheless, we have made steps forward, and 
the path is (more or less) clear. 

More specifically, we wish to use staggered fermions to measure 
matrix elements. This is in distinction to Wilson fermions with which, to 
my knowledge, all calculations down the right-hand side of my list have 
been done. The merits of both types of fermion have been extensively dis- 
cussed in the literature. (1) I will note only the following features. For 
Wilson fermions, the evaluation of quantities related to chiral symmetry 
breaking, e.g. ~)~Z) and ~z-~ scattering amplitudes, is difficult because 
there is no chiral symmetry that is even partially conserved. One has to 
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make nonperturbative subtractions to regain the Ward Identities which 
follow from the chiral symmetry. (11) On the other hand, staggered fermions 
have a nonsinglet axial U(1) symmetry which is only softly broken by mass 
terms, and which appears to be dynamically broken, just as in the con- 
tinuum. This guarantees lattice versions of all the standard current algebra 
results, e.g., the relation of Gelt-Mann, Oakes and Renner, (lz) and the 
Weinberg scattering length formula, (13) involving no subtract ions/m It can 
also be shown (~4) that, for appropriately chosen operators, the chiral 
behavior of weak interaction matrix elements is as expected from current 
algebra and PCAC. But for most quantities subtractions are not necessary, 
and Wilson fermions are preferred. This is because the flavor and spin pro- 
jections are straightforward for Wilson fermions, while for staggered fer- 
mions, as I shall discuss more below, they are complicated. A good exam- 
ple of this is the recent calculation using Wilson fermions of the mass of the 
H particle (6) (the lightest 6-quark state with flavor composition udsuds). 
The complicated spin contractions necessary to project onto the lightest 
state cannot easily be done with staggered fermions, as the required 
operators are nonlocal and involve fluctuating gauge links. In summary 
then, for processes involving pions, staggered fermions are preferred, and 
we will use them in the following. 

The problems with staggered fermions arise from using 1-component 
objects to represent 4 flavors of 4-component spinors. The spin and flavor 
degrees of freedom are distributed over the 16 lattice sites of a hypercube. 
One problem this causes is that the lattice symmetry group includes shifts 
by a single lattice unit. This symmetry is only realized when the ensemble 
of gauge configurations is invariant under these shifts. A related problem is 
that the conserved vector and partially conserved axial currents are non- 
local. These currents must be used in the calculation of weak interaction 
matrix elements. But the matrix elements including these currents are sub- 
ject to extra noise, because they involve fluctuating links. A further 
problem is that one cannot construct operators that project onto states of 
definite parity. This is because the 16 sites needed to construct fermion 
operators lie on two time slices. To combine them into an operator one 
needs to know the transfer matrix, i.e., one needs to solve the theory. 

Things are not so bad in the pion channel. To understand this I must 
give some details of the staggered fermion symmetries. 3 These will also be 
useful below. Although the symmetry group only becomes spin x SU(4) 
flavor in the continuum limit, it is convenient to use this group to desribe 
the states. (16) I will use gamma matrices to describe the flavor as well as the 

3 The symmetry group of staggered fermions has been studied recently by Golterman and 
SmitJ TM Kilcup and I have found a somewhat nicer way of looking at the group. (~4) 
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spin, but denote the flavor matrices by Ts, etc. Then the pair of states witti 
opposite parities are 7spin • T/lavor and 7spin7570 X T~qa,or Ts To. The pseudo- 
goldstone pion has quantum numbers 75 x Ts, so its partner is 7o x T o. In 
the continuum limit the latter operator is the charge density of a conserved 
current, and so cannot create a massive scalar state. Thus of all the states 
the pion is most easily projected onto; away from the continuum limit the 
amplitude of the scalar partner should be small, and in practice it is in the 
noise. This is fortunate for studies involving pions, but it is not the end of 
the story of the scalar partner, as we shall see below. For the other spins 
both parities are present. The pairings are p/B, ~/AI, ~/~, where a ~ means 
the state created by the spin operator 7i7o, and ~ is created by 757o. The 
states are labeled according to their spin and flavor, the e, for example, 
being the lattice-scalar, flavor-singlet state. Note that the lattice symmetry 
does guarantee that the three-spin components of the p have equal energy 
(though only at zero momentum), but it does not guarantee that m~ = m~ 
or that m~. These equalities should hold in the continuum limit, and the 
deviations from equality give an indication of the errors due to dis- 
cretization. 

A problem common to both types of fermion is that of needing very 
large lattices to reach the region where one can confidently take the con- 
tinuum limit. This region of assymptotic scaling (AS) is that for which 
physical quantities scale according to the perturbative renormalization 
group (RG) equation, i.e., proportional to powers of e-1/g2. For  pure gauge 
theories one needs to go to at least /~ = 6/g2= 6.1 for this to be true, the 
nonperturbative /3 function differing from the two-loop assymptotic 
freedom prediction for smaller/~(~7). For/~/> 6.1 one expects lattice spacings 
such that 

1 1 
a < 

2Gev 10 J 

so one wants Ns > 10 to reasonably accommodate hadrons, and of course 
Ns < N, to make the temperature small. We are using an 183 x 42 lattice at 
/ /=  6.2 and feel that this is the bare minimum. The problem then is that it 
is very time-consuming to do fermion physics on this lattice. One wants to 
solve the lattice Dirac equation on each lattice for a variety of quark 
masses and a variety of base points, and one wants to do this for as many 
lattices as possible. The inversions take hours of Cray time each, though, 
adding up to a considerable amount of computer time. Furthermore, to 
move down my list, one needs to develop and test new techniques, and for 
this a large lattice is inappropriate. Our attempted solution to this problem 
depends on the existence of a scaling region. In this region ratios of 
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physical quantities are constant, but the physical quantities do not scale 
according to the perturbative RG. It is not clear that this notion is any 
more than a clutching at straws. If it does have some validity, however, 
then one should be able to find an improved action which has the same 
long distance properties as a lattice on the Wilson axis at/3 > 6.1, and yet 
has a much larger lattice spacing. 

The obvious way to construct such an action for the gauge degrees of 
freedom is to use a real space RG transformation, blocking the original 
large lattice down to a smaller one. To the extent that the blocking trans- 
formation is good, the large Wilson loops on the small lattice will retain 
the information of those on the large lattice. Since fermion propagators are 
expansions in which the coefficients are Wilson loops, there is some reason 
to expect that the fermion physics calculated on the blocked lattices will 
also retain the long distance physics of propagators calculated on the large 
lattice. This is counterbalanced by the coarseness of the small lattice. The 
best way to procede is to improve the fermion action simultaneously, coun- 
teracting some of the effect of this coarseness. This can been done for 
Wilson fermions by integrating out the heavy short distance modes. (18) But 
this procedure fails for staggered fermions because the short distance 
modes are massless. They are precisely those modes which turn the one 
component fermions into 16-component fermions. One can nevertheless 
imagine attempts in this direction, (19~ but here we simply use the standard 
staggered fermion action on the blocked lattice. 

Thus we have calculated propagators on 63x 14 lattices obtained 
by twice blocking the 183 x 42 lattices with the 31/2 blocking 
transformation. (2~ We have also used the same procedure to block the 
243 x 48 lattices of Phillipe de Forcrand, (5) to 83 x 16 lattices. Calculations 
are quick and cheap on the small lattices, and we have used them to obtain 
results with good statistics and to develop and test techniques. 

The data sample from which I will present results is as follows. The 
183• 42 lattices were generated with a 20-hit Metropolis algorithm. 400 
thermalization sweeps were discarded, and then every 50th lattice was 
blocked to a 63 x 14 lattice. We have calculated propagators on 40 of these 
lattices. We are also in the process of calculating propagators on the 
183• 42 lattices every 250 sweeps, and at the time of writing we have 
results from 12 15 (depending on the quark mass) such lattices. These 
results are clearly important for comparison with the small lattices to test 
the idea of using an improved action, but our results on the large lattices 
are preliminary. We also have calculated propagators on 25 of the blocked 
83 x 16 lattices. (5) For  purposes of comparison we have also generated 29 
(1 was lost!) 83 x 16 lattices at r 5.6 on the Wilson axis. Our inversions 
are done with a standard even-odd partitioned conjugent gradient 
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routine. (21) The code has to be optimized depending on the machine being 
used. Our time sliced 18 3 x42 program completes 500 iterations (each 
iteration involves two multiplies by the covariant derivative) on three 
colors in 50 minutes on a CRAY-XMP, if i/o is done with a solid-state 
disk. One thousand iterations are required for convergence at the smallest 
quark masses. The smaller lattices can be run entirely in memory, and our 
inverter does 500 iterations in about 70 s on the 83 x 16 lattices. Thus, the 
in-memory inverter is a little faster. The propagators were calculated with 
antiperiodic boundary conditions in space and both antiperiodic and 
Dirichlet boundary conditions in time. 

In what follows I concentrate on the parts of our results that are most 
relevant to going beyond the naive mass spectrum. More details of the 
results from the 63 x 14 lattices can be found elsewhere. (1~ The 83 x 16 and 
183x 42 results will be written up fully elsewhere. (22) 

The first results I will present are for Wilson loops calculated on the 
blocked lattices. We would like to calculate the string tension on all the lat- 
tices and compare their values. Unfortunately, we do not yet have enough 
statistics. What we can do is see how the Wilson loop values compare to 
those on the Wilson axis. This gives us some insight into how our 
improved action differs from the Wilson action. We find, for both 63 x 14 
and 83 x 16 lattices, that as the loop size increases the loop values converge 
to Wilson axis values for/~ ~ 5.47 and 5.57, respectively. These values are 
consistent with expectations from Monte Carlo RG measurements of the 
nonperturbative /3 function. (171 Smaller loops, however, correspond to 
smaller values of /L Thus at short distance the gauge degrees of freedom 
fluctuate more with our blocked action than at a point on the Wilson axis 
where long distance properties match. At the shortest distances this is 
probably an artifact of the RG transformation. At intermediate distances, 
however, this trend must represent the attempt of the blocked action to 
improve over the Wilson action. It certainly means that if we could extract 
a string tension it would be different from that at the corresponding point 
on the Wilson axis. Thus the physics of the blocked lattice is different from 
that of the Wilson axis, but we cannot tell whether it is better or worse. In 
one respect, though, it is definitely worse. The larger fluctuations of the 
gauge links will increase the noise in the correlators with nonlocal 
operators which I discuss below. 

I next turn to the mass spectrum of the theories. We can test whether 
or not using blocked lattices improves the fermion physics in two ways: 
comparison with Wilson axis results and comparison with results on the 
large parent lattice. (I will use the term "large" to refer to the 
18 3 x42 lattice from now on, the other lattices being "small".) To make 
comparisons we need at least two physical quantities. For the pure gauge 
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sector, we cannot measure the string tension from our small sample, and 
we certainly cannot measure the glueball mass. This leaves the mass spec- 
trum, and I use three quantities4--f~, mp, mN. I have given them in order 
of decreasing reliability of measurement; all other quantities are measured 
too unreliably to be useful. Even though f~ is better measured, there is an 
uncertainty in how to relate it to the continuum value, because there are 
finite perturbative corrections to this relation which can only be calculated 
for lattices in the AS region. In the AS region, these corrections are as large 
as 30%. (24) 

There are problems in the extraction of masses. To do this convin- 
cingly one has to see a clean exponential signal for a number of time steps. 
For staggered fermions one has to disentangle two such exponentials, one 
of which is alternating. One has to go to large enough times to remove 
radial excitations and hope that by then the signal has not disappeared in 
the noise. Fitting is very sensitive to the assignment of errors, since a point 
on the tail of the exponential with abnormally small error can have a large 
effect on the fit. As has been pointed out by Bowler et al. (21)(23) this sen- 
sitivity has led to widely differing results being obtained from similar data. 
It makes fitting an art rather than a science, and one should be wary of the 
results and errors quoted by anyone, myself included. Our fitting has 
become progressively more sophisticated with time, and consequently the 
systematic errors decrease as one moves from the results obtained from our 
63 x 14 lattices, to the 8 3 x 16, and finally the 183 x 42. For  the last case we 
do fits with and without symmetrization, and search for stability when we 
remove various numbers of points both near and far from the base. 

I give in Table I the results for f . ,  m p ,  and m N extrapolated to m q  = O. 

Zero mass is essentially the same as the physical up and down quark 

4 Bowler et al. (23) have a nice method of comparing data in which they plot mu/m o against 
m,Jm o and compare the curve to a theoretically motivated one. Here, however, this method 
adds little insight. 

T a b l e  I. R e s u l t s  in L a t t i c e  U n i t s  ~ 

Quantities (MeV) 63 • 14 183 x 42 83 • 16(blocked) 83 • 16(Wilson) 

f~(93) 0.20(01) 0.03(01) 0.15(01) 0.18(01) 
mp(776) 1.45(01) 0.47(07) 1.10(20) 1.10(20) 
mN(938) 1.80(40) 0.45(15) 1.90(30) 1.90(30) 

a All numbers are extrapolated to mq = 0. Errors are statistical. Results from the 183>( 42 lat- 
tice are preliminary. Experimental numbers are given for comparison. 
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masses, and I give the experimental numbers for comparison. I stress that 
the 183 x42  results are preliminary. The errors quoted are statistical and 
they are somewhat uncertain since they involve an estimate of the error 
introduced by the extrapolation. The systematic errors have been discussed 
above. The most reliable conclusion that can be drawn from this table is 
that it is very hard to say anything! The errors in the masses, particularly 
raN, are very large. The errors in f~ are smaller, but then there are the 
systematic errors discussed above. One can procede blindly and say that 
the 63 x 14 blocked lattice results appear better than the 83 x 16 Wilson axis 
results, but then the 83x 16 blocked results are only marginally better 
(f~/mp is smaller) than those on the 83x 16 Wilson lattice, so this is not 
much of a victory for the blocked lattices. The 63 • 14 and 183 x 42 results 
should differ by a factor of 3 if long-distance physics is retained by the RG 
transformation, and this is clearly possible for rnp and raN, but not for f~. 
However, the corrections in the relation between lattice and continuum f ,  
values need not be the same, and the 183X 42 data is preliminary and has 
large errors, so this is not conclusive. 

Thus I find it hard to draw any quantitative conclusions from these 
comparisons. However, I think some qualitative conclusions can be drawn. 
If I take the 83 x 16 results as typical of blocked lattices, as I am inclined to 
do since the fitting is more reliable than on the 63 x 14 lattices, then there 
really does seem to be an improvement in rnN/m o when one goes to the 
large lattice. This is expected, but it is gratifying to see it anyway. Also 
there is a significant improvement in the recovery of SU(4)-flavor sym- 
metry on the large lattices. This is most striking for the n and if: for the 
smallest quark masses on the small lattices the ff is nearly as heavy as the p 
and shows no signs of goldstone behavior. On the large lattice we find 
degeneracy! A similar, though less striking result holds for the p and ~. 
There are also some clear differences between the results on the 83x 16 
blocked and Wilson axis lattices. First, the signals of particles not discussed 
above, e.g., the A 1 , are clearly stronger on the blocked lattices. Second, the 

mass, for small quark mass, is close to twice the pion mass on the 
blocked lattices, whereas on the Wilson axis it is heavier, almost as heavy 
as the p. (We have no results for the e on the large lattices at present.) I 
will return to this difference below. 

Summarizing, I would say that the idea of using blocked lattices to 
obtain improved results is not very useful. Simultaneous improvements in 
the fermion action might help. But even if an improvement scheme can be 
found for staggered fermions, the uncertainties in fitting seem to me to 
nullify any probable gain. Furthermore, the proximity of the small lattices 
to the strong coupling region causes poor  results for those mesons which 
are infinitely heavy in strong coupling. I shall discuss an explicit case of this 
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below. The same is not necessarily true for Wilson fermions, and 
reasonable results have in fact been obtainedJ ~8) 

I now turn to the other function of the small lattices: to serve as a 
testing ground for new techniques. In fact we have used two new techni- 
ques in obtaining the results given above. The first is used in the evaluation 
o f f . .  We use the relationship 

where the left-hand side is to be evaluated at mq = 0. This requires the 
evaluation of zZ(mq = 0). To do the extrapolation we used (14) 

(1 - -mq~mq)  zZ(mq)=2mq ~, IG(n;O)l 2 
neven 

where G(f; i) is the quark propagator from i to f The left-hand side is the 
intercept of )~)~ at mq = 0,  calculated using linear extrapolation. The right- 
hand side can be evaluated with only a single propagator calculation. This 
method reduces the number of values of mq needed to estimate ~)~(mq = 0). 
For the small lattices it is helpful, but its real strength is on the large lat- 
tices where )~Z is a rapidly increasing function of mq. The extrapolated 
value for the large lattice quoted in Table I would have been very hard to 
obtain without using this method, because at smallest m a s s  mq = .01,  )~Z is 
.061(2). 

The second technique is more important. As explained above, apart 
from the pion channel, all mesonic channels have contributions from both 
positive and negative parity states. However, if we look in the continuum 
at 2-point correlators in which one operator has an extra Yo in its spin pro- 
jection compared to the other operator, then only the p and zc can be both 
created and destroyed. All the positive parity states couple to only one of 
the operators. On the lattice the equivalent to adding a Vo is adding a time- 
directed link. However, on the lattice we can no longer make a rigorous 
argument excluding positive parity states. We can only appeal to the con- 
tinuum limit. We have calculated correlators between local operators and 
operators nonlocal in time, (1~ and find, somewhat to our suprise, that all 
positive parity signals are in the noise. Thus we can fit with a single 
exponential. For the ~ this makes no difference. In fact the local-nonlocal 
correlators in the r~ channel are related by an identity to the local-local 
correlators, (14) so no new information is gained. But the mp, mz, and ms 
results are significantly improved, particularly on the large lattice. Again 
this technique requires no extra propagator calculations and should be 
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used in conjunction with 2-point correlators involving only local operators, 
to extract more reliable masses for the states of both parities. 

Finally, I turn to our attempts to go beyond the mass spectrum. Our 
first attempt is related to the need to use nonlocal vector and axial 
operators to measure matrix elements. We take a first step by measuring 2- 
point correlators with these operators to see whether the fluctuating gauge 
links destroy the signal. 3-point functions using the vector operator, e.g., 
the pion form factor, have been measured for staggered fermions in 
SU(2). (25) For  these, however, one can show that at zero momentum the 
equations of motion guarantee that the gauge link fluctuations do not effect 
the signal. (14) This is not true for the 2-point correlators in which both 
operators are nonlocal in space. To calculate these correlators one needs 
propagators from two adjacent base points. We have done this calculation 
on the blocked 6 3 • 14 and 8 3 x 16 lattices. The channels for these operators 
are the same as for local operators, but there is an additional p/A, channel 
and also another ~/B channel. We find that, indeed, the signal is noisier 
that those in correlators with local operators. There are signals, 
nevertheless, which for most mq a r e  in the ~r, the e, one of the p, and both 
of the t~ channels. The masses of the three ps and the ~ are comparable to 
those of their local partners. On the other hand, the nonlocal z is heavier 
than the local (goldstone) z, behaving similarly to the local ~. There is 
evidence of positive parity particles, but it is too weak to fit. The most 
striking result, however, is that the channels with the poorest signals are 
those corresponding to the vector and axial currents. This is disappointing, 
but it is perhaps not suprising as, in strong coupling, the states in these two 
channels are infinitely heavy. 5 Clearly, more study is needed. In particular, 
it would be interesting to compare the blocked and Wilson axis 
8 3 x 16 lattices since the signal on the Wilson axis lattice may be better as 
the gauge links fluctuate less. The results from our large lattices should be 
better still. 

This brings me to my final subject, the epsilon: the lattice scalar state 
which corresponds to the scalar, isoscalar in the continuum limit. Studying 
this particle turns out to be very instructive for a number of reasons. First, 
the techniques needed are also required in matrix element computations. 
Second, the experimental situation in the scalar, isoscalar channel is con- 
fused, and LGT can actually be used as a helpful tool. And finally it turns 
out that the problem of decaying particles that will be faced with 
dynamical fermions has to be faced here. Thus indeed we are inching e 
beyond the mass spectrum. 

5 I thank Apoorva Patel for enlightening me on this point. 

822/43/5-6-27 
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I only briefly discuss the technique, since it is a variation on the source 
technique of Bernard et al. (26) For  matrix elements, one needs to measure 
3-point functions in which the propagators do not share a common 
endpoint. To project onto a momentum for two of the three points of the 
correlator requires propagators with bases at every point on at least one 
time slice. This is clearly too time-consuming. Instead we first calculate a 
propagator with a ~ function source at the base point. Then we use one 
time-slice of this propagator, weighted with phases, as a source for a 
second propagator. Finally we contract the first and second propagators. 
Thus for each momentum, and each time-slice of the pion source, one has 
to calculate only one extra propagator. 

We use this technique to calculate the e - r ~ - ~ z  3-point function. 
Recall that we left the e as a particle with rn~ ~ 2m~ on the blocked lattices 
and with rn~ ~< mp on the Wilson axis. Other lattice calculations have also 
found a light e, but its mass appears to increase with increasing /~,(27)(28) 
such that at/3 = 6.0 on the Wilson axis it is heavier than the nucleon. 

Experimentally, n - n  scattering and K decays (29) rule out that 
rn~ ~< 2m~. The lightest candidate state in the scalar isoscalar channel is the 
S*(980), but this most likely has flavor composition us-~ + dsd's. (3~ It can 
be interpreted either as a KK" bound state (31) or as a bag exotic (3~ The 
next state in the channel is the very broad e(1300), which appears to be 
made primarily of up and down quarks. The lattice e is made of light 
quarks, and so one should consider the partner of the S* in which the s 
quarks are replaced by u and d quarks. In the bag model (3~ this state is 
extremely unstable, lying well above the 2-pion threshold. Jaffe and Low (32) 
analyze the effect of this unstable state using the P matrix and find that it 
can account for the broad region of attraction in n - n scattering [the old 
8(600) (33)] that lies below the S*. In the bound-state picture, (31) however, 
there is only a weak attraction between the pions, which has little effect on 
the phase shift. In this view the e(600) is only the tail of the very broad 
~(1300). (34)(35) 

Thus the theoretical and experimental situations in this channel below 
the S* are both confused. We have tried to shed some light by calculating 

- 7 z -  n 3-point functions. Doing this also allows us to test our source 
technique. We have only done this calculation on the 63X 14 lattice, and 
with all particles at zero momentum. 

Depending on the time-ordering of the three operators, different 
physical processes are allowed. If the two pions lie on the same side of the 
e, then either a resonant e is being created, which propagates and then 
couples to two pions, or the scalar operator is creating two pions in a non- 
resonant fashion. A combination of resonant and nonresonant "~" is also 
possible. If the e lies between the pions, one is measuring the matrix 



Lattice QCD: Going Beyond the Mass Spectrum 1141 

element (hi iZ In). This is not all, however. If one of the pions lies 
between the other n and the e, the positive parity part of the n operator can 
have a matrix element between the n and the ff (the latter created by the e 
operator): (77[ 0 + In). In the continuum limit, this is a flavor non singlet 
charge and its value should be 1. It is interesting to know the lattice value, 
but for present purposes it a nuisance. 

All these processes are included in our fits to the data. We find that it 
is not possible to obtain good fits for small quark mass unless there is a 
resonant e contribution, with the mass of the e increased significantly over 
its 2-point correlator value. The numbers are given in Table II. The 3-point 
functions require an e almost as heavy as the p. Table II also shows the 
reduced width of the e, calculated from the coupling constant measured 
from the 3-point function 

F r e d  - F(G ~ nn)  = 3ge~ ~ 
N~__  2 2 4m ~/m~ 8rcm~ 

The table shows that the e width can exceed half of its mass. Thus, the 3- 
point functions want a resonant e with a mass definitely 2m~, and with a 
very strong coupling to two pions. 

This result is in apparent contradiction with that obtained from the 2- 
point functions. We have, however, found a simple explanation for this: on  
the blocked lattices we are indeed seeing two zero momentum pions in the 
e channel, not a resonant state. This is possible even though we are working 
in the quenched approximation, because the symmetry which forbids the e 
to couple to two pions is not an identity. It is only good after averaging 
over gauge fields, and thus the effect is only statistically zero. One can 
make two pions with only a quark and an anti-quark line by sending either 
one in a loop from the base point to the final point, then back, and then 

Table  II. Results  f r o m  the  B locked  6 3 x 1 4  Lat t ices a 

mq 2m, m~(2pt) m~(3pt) mp I~e'J/m~ 

.030 0.96(8) 0.94(5) 1.31(3) I.39(8) .78 

.045 1.16(4) 1.12(5) 1.35(2) 1.39(5) .66 

.060 1.32(4) 1.24(4) 1.41(2) 1.41(3) .58 
A00 1.64(4) 1.46(4) 1.54(2) 1.47(2) .44 
.250 2.42(2) 1.83(6) 2.02(2) 1.68(1) .38 

All numbers are in lattice units. Errors are statistical. 2 and 3 pt refer, respectively, to results 
from 2- and 3-pt correlators./~d is defined in the text. 
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back again, before it is contracted with the final operator. For this to work, 
one of the pions must annihilate into gluons. 6 The staggered fermion dis- 
crete flavor symmetry, which forbids this, is a shift symmetry. This is fully 
realized only if the ensemble of gauge configurations shares this symmetry, 
which it will not do in a finite sample. If this explanation is correct the 
effect should decrease as the square root of the number of configurations 
used. We hope to check this in the future. 

This also explains the difference between the blocked and Wilson axis 
results, and the increase of m~ with increasing /3. The point is that the 
blocked lattices have links which fluctuate more than their Wilson axis 
counterparts, so that the shift symmetry will be less well realized for a fixed 
number of configurations. Similarly, the symmetry will become better 
realized as one moves to larger fl along the Wilson axis. For infinite fl the 
symmetry is exact. I am thus claiming that looking at 2-point functions one 
sees, with a naive f i t ,  more of a resonant state and less of the spurious 2r~ 
state as one moves to larger fl on the Wilson axis. It is not clear, however, 
what the true value of m~ is. If we accept the result obtained at/~ = 6.0 (28) 
then it may be almost as large as mA1. 

But, whatever the true mass is, we should be able to extract it at any/3 
from our 2- and 3-point correlator data. Notice that, if our explanation is 
correct, the situation we face is similar to that which will be faced when 
using dynamical fermions for all particles except the N and n, somewhat 
ameliorated by the fact that our decay vertex is suppressed. We have refit 
our 2-point correlator data with a form which includes e propagation with 
a single decay and recombination, one of which is allowed, the other being 
suppressed by the shift symmetry. The decay and recombination can occur 
at any times as long as they are ordered. We only include zero momentum 
pions in the intermediate state, since the energy of a pion with the smallest 
allowed momentum is large on our lattice. Thus the fitting function is an 
approximate lattice version of a one-loop bubble diagram. It has terms 
proportional to e - '~', te -m~', and, most importantly, e -2m~t. Our data can 
be fit with such a form with m~ anywhere in the range 1.3-1.8 (in lattice 
units), for the smaller quark masses. If we use the allowed vertex found in 
3-point correlator fits, we find that the suppressed e - n - n  vertex is two 
orders of magnitude smaller than the allowed vertex. This supports our 
explanation. But there are not enough points to thoroughly test the fitting 
function, so no definitive conclusions can be drawn. 

To be consistent we must include the effect of decays into the 3-point 
functions. The decay (and subsequent recombination) can occur prior to 

6 Notice that this type of diagram is not forbidden if the pions are replaced by ~/s, but  on our 
lattice these states are heavy and their contribution is suppressed. 
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the final coupling to two pions. We expect this to be a smaller effect for the 
3-point function, because the e propagates for a shorter time. Nevertheless, 
it means that ou~" estimate of the m~ from the 3-point correlator will be 
systematically low. 

What do I conclude from all of this? I can see two possibilities. The 
first is, when a simultaneous fit to both 2- and 3-point correlators is done, 
it will reveal an e considerably heavier than the p, perhaps heavier than the 
1.06 GeV quoted at fl=6.0. ~2s) Such a state is very similar to the quark 
model ~q scalar. Note that neither lattice nor quark model calculations 
include the effect of decays, so they can be compared. The 3-point 
correlator data will still give this particle a strong coupling to two pionso 
Thus the inclusion of quark loops could significantly shift the mass. This is 
exactly what Tornqvist claims, ~34) with the state ending up as the e(1300). 

The second possibility is that the ~ is truly light with ms,~ mp. This 
requires rejecting the result a t  f l - ~ 6 . 0 .  (28) It is the view that we have 
advocated. (1~ The state would be very broad and would be identified with 
the "e(600)." I think that this possibility has some chance of being correct. 
By performing the fits discussed above we have supposedly isolated a state 
which, in the quenched approximation, cannot decay into two pions. 
However it still can have a o--qqq intermediate state. The extra attractive 
energy which Jaffe (3~ found in the bag model could be present here. Thus 
the state could be one of Jaffe's primitives, a state which disappears when 
the decay channels are opened up. This is a different state from that found 
in the quark model, and so there is no contradiction with the quark model. 
Presumably the ~q state would be an excitation, hiding in the data. 

To distinguish between these two possibilities more measurements are 
needed. We need simultaneous fits of 2- and 3-point correlators. Also 4- 
point correlators can be calculated and added to the analysis. And, of 
course, results from large lattices can easily discriminate between the 
possibilities. We are working on these things. 7 

In conclusion, even though I have not put a great deal of meat on the 
bones of "going beyond the mass spectrum," I am pleased that the lattice 
appears to be able to help resolve phenomenological problems. It is 
encouraging that it is possible to extract numbers in fairly complicated 
processes using staggered fermions. We have in fact extended our 3-point 
correlator analysis to the AI and nucleon channels, with successful results, 

v I have not discussed the scalar glueball, which is expected to have a mass between 0.5 and 
2.0 GeV, and confuse this channel further. Essentially, I have assumed that it is heavier than 
the S* and plays no important role. If it is lighter it could usurp the role of the e in the 
second possibility discussed in the text. It is hard, however, to accommodate two light scalar 
states in the dataJ 36) 
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and we are looking at 4-point correlators. But it seems unlikely that using 
blocked lattices with staggered fermions is a useful substitute for working 
on large lattices, at least for extracting credicle physical numbers. We are, 
however, continuing to use the 83x 16 lattices to develop the programs 
needed to extract matrix elements. 
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